
High-Resolution Streaming Functionality in
SAGE2 Screen Sharing

Kazuya Ishida1, Daiki Asao2, Arata Endo1, Yoshiyuki Kido3, Susumu Date3,
and Shinji Shimojo3

1 Graduate School of Information Science and Technology, Osaka University, Japan,
{kazuya.ishida, endo.arata}@ais.cmc.osaka-u.ac.jp

2 School of Engineering, Osaka University, Japan,
asao.daiki@ais.cmc.osaka-u.ac.jp

3 Cybermedia Center, Osaka University, Japan,
{kido, date, shimojo}@cmc.osaka-u.ac.jp

Abstract. Visualization on a Tiled Display Wall (TDW) is an effective
approach for sharing large quantities of scientific data among researchers
in collaborative research. SAGE2 (Scalable Amplified Group Environ-
ment) is a popular middleware for organizing multiple monitors into a
TDW. SAGE2 has a useful function, Screen Sharing, which allows the
user to utilize existing applications on a TDW without redevelopment.
However, the current Screen Sharing has a problem in that it displays
the application window at the same resolution as the monitor devices
connected to the user’s PC. Such insufficient resolution degrades the
visibility of scientific data visualized on a TDW. In this paper, we in-
corporate a frame-streaming method we designed into Screen Sharing
to realize the functionality of high-resolution streaming. Our evaluation
demonstrates that our method enables Screen Sharing to display the ap-
plication window at an arbitrary resolution on a TDW. Our method is
also effective in improving the frame rate of Screen Sharing. For example,
19.2 fps is achieved when displaying a 4K application on a TDW.

Keywords: Visualization, Tiled Display Wall, SAGE2, Screen Sharing

1 Introduction

The collaboration of researchers is essential for scientific discovery in modern
science. To deal with difficult and complex tasks, the collective effort of many re-
searchers has often been required. For example, in the KBDD (K supercomputer-
based drug discovery) project [1], researchers from various companies and aca-
demic institutions have worked together to discover chemical compounds for
novel drugs through molecular dynamics simulations performed by the K super-
computer.

In collaborative research, researchers involved in a project often have discus-
sions based on the scientific data they acquire. As a consequence of the recent



2 Kazuya Ishida et al.

performance enhancement of computers and measuring equipment, the oppor-
tunities for researchers to treat large quantities of scientific data have been in-
creasing. To facilitate research discussions using such large data, the data should
be intuitively visualized and arranged on a high-resolution screen so that it can
be easily understood and compared with other data by the researchers. In the
KBDD project, for example, the results of the molecular dynamics simulations
are supposed to be visualized in the discussions on the druggability of chemi-
cal compounds. Since the researchers discuss druggability while comparing the
targeted compound with many different types of other compounds, the multiple
visualized simulation results need to be laid out on a high-resolution screen [2].
For this purpose, visualization on a TDW (Tiled Display Wall) [3] is an appro-
priate approach. A TDW is a scalable visualization system, which can provide
a high-resolution virtual screen by combining multiple sets of computers and
monitors. A large-scale TDW allows a large number of researchers to observe
the visualized data simultaneously and to exchange ideas with each other on the
spot.

To construct a large-scale TDW, various middleware have been developed,
such as SAGE2 (Scalable Amplified Group Environment) [4], CGLX (Cross Plat-
form Cluster Graphics Library) [5] and DisplayCluster [6]. In particular, SAGE2
has been accepted in various research fields because of its advantageous fea-
tures for both co-located and remote collaborative work. In reality, 91 or more
universities/institutes all over the world have adopted SAGE2 [7].

The major reason why SAGE2 is suitable for collaborative research is that
SAGE2 provides Screen Sharing, which is an optional function to leverage ex-
isting visualization applications on a TDW. Most middleware-based TDW can
display only the applications developed with the special APIs provided by the
middleware. To use an existing application on such a TDW, the user is required
to add the API calls in the source code and re-compile it. In contrast, a SAGE2-
based TDW can perform the mirroring of an application window generated on
the user’s PC by using Screen Sharing. This function allows the user to leverage
a wide range of existing applications in a non-invasive manner.

However, the current Screen Sharing has an undesirable problem in that
it cannot display an application window at an arbitrary resolution on a TDW.
This is because Screen Sharing is realized by capturing video frames on the user’s
PC and streaming them to the TDW. The resolution of these video frames is
determined by the size of a framebuffer on the user’s PC. A framebuffer is a
memory space to store image data drawn by applications. The available sizes
for a framebuffer are confined to the specific values supported by the monitor
devices connected to the user’s PC video card device. Therefore, if the resolution
which the connected monitor devices support is much lower than the TDW, the
application window is displayed on the TDW with its visibility degraded.

In this paper, we propose a frame-streaming method which enables Screen
Sharing to display a high-resolution application window regardless of the lim-
itations of the connected monitor devices. In addition, our method improves
the efficiency of the processing in streaming video frames to achieve a better



Future of Information and Communications Conference (FICC) 2019 3

frame rate. The remainder of this paper is structured as follows. In section 2,
we present the overview of SAGE2 and Screen Sharing. In section 3, we describe
the technical problems and issues we tackled. In section 4, works related to our
research are introduced. Section 5 shows the frame-streaming method for realiz-
ing high-resolution streaming functionality in Screen Sharing. The experiments
for evaluating the validity and scalability of the proposed method are described
in Section 6. In section 7, we conclude this paper and note our future work.

2 SAGE2 Screen Sharing

2.1 Architecture of SAGE2

SAGE2 (Scalable Amplified Group Environment) [4] is an open-source middle-
ware, which has been developed at EVL (the Electronic Visualization Labora-
tory) at the University of Illinois, Chicago (UIC). SAGE2 can build a large vir-
tual desktop on a TDW and arrange multiple application windows on it just like
a window manager. In addition, SAGE2 has a function to distribute the visual-
ized contents to other TDWs in geographically separated sites via a WAN (Wide
Area Network).

SAGE2 is cloud and web-browser-based technology, which is implemented
with HTML5, JavaScript and WebGL. Figure 1 shows the architecture of a gen-
eral SAGE2-based TDW. A SAGE2-based TDW consists of three components:
the display clients, the interaction client and the SAGE2 server. The display
clients are the HTML pages opened by the full screen web browsers on all the
monitors of the TDW. Each display client renders the particular domain of the
virtual desktop corresponding to its own client ID. The interaction client is the
web page with the JavaScript programs to provide SAGE UI, which is a graphical
user interface of SAGE2. Through the SAGE UI, the user can move and resize
the windows on the virtual desktop. The SAGE2 server is a web server that
plays the core role of controlling the entire TDW. The SAGE2 server reflects the
results of user operations on SAGE UI and synchronizes the other components
by exchanging the control messages through a WebSocket protocol. The con-
trol message is composed of a message name and several data (e.g. window size
and image data). When each component receives a control message, a callback
process corresponding to its message name is executed on the component.

2.2 Screen Sharing

Screen Sharing is the function of SAGE2 for sharing the user’s desktop contents
among the members of the project. This function is realized by streaming video
frames of the application window to the TDW with several browser APIs such
as getUserMedia(), drawImage() and toDataURL(). Thanks to Screen Sharing,
SAGE2 allows the user to leverage existing applications on a TDW without
modification.

Screen Sharing is the function of SAGE2 for sharing the user’s desktop con-
tents among the members of the project. This function is realized by streaming



4 Kazuya Ishida et al.

Fig. 1: Architecture of the SAGE2-based TDW

video frames of the application window to the TDW with the several browser
APIs such as getUserMedia(), drawImage() and toDataURL(). Thanks to Screen
Sharing, SAGE2 allows the user to leverage existing applications on a TDW
without modification of them.

Figure 2 illustrates how Screen Sharing works. If the user launches Screen
Sharing through SAGE UI, the WebSocket connection is established between
the user’s PC and the SAGE2 server by exchanging the requestToStartMediaS-
tream message and the allowAction message. Next, the interaction client starts
capturing video of the application window in the background process by using
a getUserMedia() API. This API captures video from a framebuffer, which is
memory space allocated on the graphics memory so that an X server can store
image data drawn by X applications. The captured video is streamed to the
hidden video element of the interaction client. Then, the loop for streaming the
frames of the captured video is iterated continually until Screen Sharing is ter-
minated by the user. This loop is composed of the following four steps ((1)～(4)
in Fig. 2).

(1) Extraction: The interaction client extracts the latest frame from the captured
video, and places this frame onto the hidden canvas element by using the
drawImage() API.

(2) Conversion: The extracted frame is converted to a JPEG image in Base64
format with the toDataURL() API.

(3) Transmission: The Base64 string of the frame is transmitted as the update-
MediaStreamFrame message to the SAGE2 server.



Future of Information and Communications Conference (FICC) 2019 5

Fig. 2: System architecture for Screen Sharing

(4) Synchronization: After the SAGE2 server updates the frame to all the display
clients, the SAGE2 server passes the requestNextFrame message to the user’s
PC.

3 Problems and Issues

The current Screen Sharing of SAGE2 has the following two problems: Resolution
Constraint and Conversion Delay. In this section, we describe these problems
and the technical issues required to overcome them.

3.1 Resolution Constraint

As mentioned in 2.2, the current Screen Sharing captures video frames of the
application window from the framebuffer on the user’s PC. The resolution of
these video frames is determined by the size of the framebuffer on the user’s PC.
Generally, since the size of a framebuffer is fixed to the specific values which
are supported by the monitor devices connected to the user’s PC video card
device, there is a limit to the resolution at which Screen Sharing can display the
application on a TDW.

This Resolution Constraint problem causes the visibility of the application
on a TDW to deteriorate when there is a large difference in the number of pixels
between the user’s PC and the TDW. An example of such a case is depicted in
Fig. 3. In this example, the screen resolution of the user’s PC is HD (1280x720)
and the total resolution of the TDW is 7680x3240. In this case, Screen Sharing



6 Kazuya Ishida et al.

Fig. 3: Example of the deterioration of visibility caused by the Resolution Con-
straint problem

displays the application as a relatively small sized window on the TDW ((a)
in Fig. 3). Although the user can resize this window to make it larger through
SAGE UI, the enlarged window will become a rough image ((b) in Fig. 3).
Such poor visibility becomes a hindrance to gaining information and insights
from visualized scientific data. To improve the visibility of the application using
Screen Sharing, a technical issue arises: namely, how a flexible framebuffer can be
prepared on the user’s PC without being constrained by the connected monitor
devices.

3.2 Conversion Delay

In the current Screen Sharing, video frames captured on the user’s PC are
streamed to a TDW by iterating four steps: (1) Extraction, (2) Conversion, (3)
Transmission and (4) Synchronization. In advance of this research, we measured
the processing time to refresh one frame in the current Screen Sharing by vary-
ing its resolution. This precursor experiment was conducted on the environment
detailed in 6.1.

The result of the precursor experiment is shown in Fig. 4. This graph suggests
that each step requires more processing time as the resolution of video frames be-
come higher. In particular, the processing time for step (2) (Conversion) sharply
rises related to the increase of the resolution. In other words, the processing for
JPEG compression and Base64 encoding causes a serious delay in Screen Shar-
ing. This Conversion Delay problem leads to a significant degradation of the
frame rate when Screen Sharing displays a high-resolution application window



Future of Information and Communications Conference (FICC) 2019 7

Fig. 4: Breakdown of the processing time to refresh one frame in the current
Screen Sharing

on a TDW. To suppress the degradation of the frame rate in Screen Sharing,
another technical issue arises: namely, how the delay time by the step (2) can
be reduced.

4 Related Works

We have focused on displaying an existing application on a middleware-based
TDWwithout source code modification. Some other researchers have also worked
on this topic.

Tada et al. proposed an adapter solution for SAGE [8]. SAGE (Scalable
Adaptive Graphics Environment) [9] is a middleware that is a predecessor of
SAGE2. Unlike SAGE2, SAGE does not provide Screen Sharing. To utilize an
existing application on a SAGE-based TDW, developers have to add many APIs
provided by SAGE like the other middleware. Their adaptor solution allows
the users to display a window of the existing application on a TDW without
such troublesome work. As with our method, their solution adopts a virtual
framebuffer to capture image data drawn by applications. However, our research
also pursues a method to improve the frame rate in a streaming high-resolution
window.

Kimball et al. developed a framework to stream a user’s desktop contents to
a CGLX-based TDW [10]. CGLX (Cross Platform Cluster Graphics Library) [5]
is a middleware for building a TDW, which has an OpenGL-based distributed
rendering architecture. In their framework, captured frames are compressed with



8 Kazuya Ishida et al.

Fig. 5: System architecture for the Screen Sharing with the proposed method

H.264 video encoding and delivered to a TDW using UDP multicast. Their
research differs from our research in that they aim to achieve low bandwidth and
low latency in the desktop streaming for CGLX. Our research aims to incorporate
a high-resolution streaming functionality into the Screen Sharing of SAGE2.

Neal et al. implemented ClusterGL, which is a system to make existing
OpenGL applications available on a TDW [11]. ClusterGL captures OpenGL
commands from OpenGL applications and distributes them with their arguments
to the renderers on display nodes. To enhance its performance, ClusterGL also
performs several optimizations such as frame differencing and data compression.
ClusterGL has a disadvantage in that it can be used only for limited applica-
tions because it supports only OpenGL 2.1 or earlier. In contrast, SAGE2 Screen
Sharing with our method can be applied to a wider range of applications because
it adopts not command streaming but frame streaming.

5 Proposed Frame-Streaming Method

5.1 Overview of Proposed Method

We proposed the frame-streaming method for achieving the issues described in
section 3. Figure 5 overviews the system architecture for Screen Sharing with
the frame-streaming method we designed. The red and blue squares in Fig. 5 are
the implementation to incorporate the proposed method in Screen Sharing.

First, a Xvnc server is launched on the user’s PC ((A) in Fig. 5). The user has
to direct the X application to draw image data on the virtual framebuffer of the
Xvnc server, then access it via the VNC client. Next, the WebSocket connection
is established between the user’s PC and the SAGE2 server in the same way as
the current Screen Sharing. After that, the procedures for streaming video frames



Future of Information and Communications Conference (FICC) 2019 9

are repeated asynchronously by the three types of threads: the extraction thread,
the conversion threads and the transmission thread ((B-1)～(B-3) in Fig. 5). The
extraction thread is in charge of capturing the video from the virtual framebuffer
and extracting the latest frame from it. The extracted frames are given serial
numbers and stored in its queue. The conversion threads undertake the parallel
frame conversion. Each conversion thread gets one frame from the queue in
the extraction thread and converts it to a JPEG image in Base64 format. The
converted frames are collected in the queue of the transmission thread. The
transmission thread repeatedly sends the converted frames to the SAGE2 server
according to the following three procedures ((1)～(3) in Fig. 5).

(1) The converted frame is retrieved from the queue and its serial number is
checked. If the number is not the one which the next frame should have, the
frame is returned to the queue and the procedure (1) is redone.

(2) The Base64 string of the retrieved frame is transmitted as the updateMedi-
aStreamFrame message to the SAGE2 server.

(3) The thread waits until the requestNextFrame message is sent back from the
SAGE2 server.

5.2 Xvnc

To achieve a solution to the Resolution Constraint problem, we applied Xvnc [12].
Xvnc is a VNC (Virtual Network Computing) server that can also act as an X
server. The comparison between an X server and an Xvnc is shown in Figure 6.
The Xvnc is different from the usual X server in that the Xvnc uses a virtual
framebuffer instead of a normal framebuffer. A virtual framebuffer is alternative
memory space allocated on the shared memory for off-screen rendering. Xvnc
stores image data drawn by X applications on its own virtual framebuffer, and
does not output the frames to the connected monitor devices. To see and access
X applications displayed on the virtual framebuffer, the user has to access them
via a VNC client.

As opposed to a normal framebuffer, the size of virtual framebuffer can be op-
tionally changed independent of the specification of the monitor devices. There-
fore, Xvnc allows the user’s PC to prepare the application window drawn at a
larger resolution than the connected monitor devices can handle. The available
resolution in the current Xvnc ranges from 32x32 to 32768x32768, which is the
sufficient support for displaying an application window on a TDW.

5.3 Pipeline Streaming

To solve the issue for the Conversion Delay problem, we designed pipeline stream-
ing: a concept for reducing wait time that occurs due to the processing for Con-
version. Figure 7 illustrates how pipeline streaming works. The current Screen
Sharing performs sequential streaming: the four steps for streaming video frames
are iterated sequentially as shown in (a) in Fig. 7. In sequential streaming, re-
freshment of the TDW slows down greatly with respect to the increase of the res-
olution because of the processing for Conversion. This delay can be prevented by



10 Kazuya Ishida et al.

Fig. 6: Comparison between X server and Xvnc

Fig. 7: Concept of pipeline streaming

pipelining streaming in Screen Sharing as in (b) in Fig. 7. In pipeline streaming,
Extraction and Conversion for the succeeding frames are executed antecedently
during the process for the current frame. Moreover, each processing for Con-
version is executed simultaneously with the other ones by using thread-level
parallelism for further improvement of the efficiency.



Future of Information and Communications Conference (FICC) 2019 11

Table 1: Node specifications of the TDW
Name Specification

CPU Intel Xeon E5-2640 (2.5GHz) ×2
GPU NVIDIA Quadro K5000 ×1

Memory 64GB
OS CentOS 7.2

Table 2: Software versions used in the evaluation
Name Version

SAGE2 3.0.0
Chromium Browser 65.0.3325.181
TurboVNC Server 2.1.2
TurboVNC Viewer 2.1.2

Cytoscape 3.6.1

6 Performance Evaluation

We conducted two experiments to evaluate the validity and the scalability of
Screen Sharing with the proposed method.

6.1 Evaluation Environment

For the evaluation, we used the 24-screen Flat Stereo Visualization System in
the Cybermedia Center, Osaka University [13]. This TDW is composed of seven
nodes (one head node and six display nodes), each of which has the specification
as shown in Table 1. All nodes composing the TDW are connected to a dedicated
10 Gigabit Ethernet switch. The head node has a Full HD (1920x1080) monitor
and input devices (a mouse and a keyboard) and each display node is connected
to four Full HD monitors arranged in tandem.

Figure 8 shows the evaluation environment used in the experiments. One
display node was used as both the SAGE2 server and the display client. The
other display nodes were used only for the display clients. All the display clients
were accessed via Chromium browsers [14]. The head node became a client node
to launch Screen Sharing with the proposed method. To use Xvnc, a TurboVNC
server and viewer [15] were installed on the client node. The JPEG compression
quality of the video frames was configured as 90. We used Cytoscape [16] as
the application displayed on a TDW. Cytoscape is a representative software to
visualize complex networks such as molecular interaction networks and biological
pathways. The versions of these software are presented in Table 2.

6.2 Observation of Visibility

To confirm the improvement of the visibility of the application, we displayed the
window with Cytoscape at the maximum resolution of the TDW (11520x4320)



12 Kazuya Ishida et al.

Fig. 8: Evaluation environment

using the Screen Sharing with the proposed method. Fig. 9 is a snapshot of the
Cytoscape on the TDW. We also displayed the same window using the current
Screen Sharing and the resize operation, and compared them.

From (a) and (b) in Fig. 10, it can be seen that the proposed method en-
ables Screen Sharing to display the application window more precisely. The key
difference between (a) and (b) is the visibility of the label strings. In (b), the
label strings became blurry as a result of the resize operation. By contrast, all
the label strings in (a) are clearly displayed. This result shows that the pro-
posed method is effective in improving the visibility of the application window
displayed by Screen Sharing.

6.3 Frame Rate Measurement

To investigate the scalability of Screen Sharing with the proposed method, we
measured the frame rate by varying the resolution of the window with Cytoscape.
The number of the conversion threads was also changed to 1～4. In addition,
the frame rate achieved by Screen Sharing with the sequential streaming (i.e.
the current Screen Sharing) was also surveyed.

The result of the measurement is depicted in Fig. 11. This graph indicates
that the Screen Sharing with the proposed method outperforms the Screen
Sharing with the sequential streaming at all the resolution which we measured.
Moreover, it is implied that the frame rate is improved by increasing the num-
ber of the conversion threads. The proposed method enabled Screen Sharing to
achieve 19.2 fps (frames per second) when displaying the window at 4K resolu-
tion (3840x2160).



Future of Information and Communications Conference (FICC) 2019 13

Fig. 9: Cytoscape on the TDW

6.4 Discussion

6.2 and 6.3 demonstrated that our proposed method enabled Screen Sharing to
stream a high-resolution application window at a better frame rate. However,
there is still room for improvement in the proposed method for more practicality.
The points to be improved are discussed below.

First, it is necessary to make the proposed method available on the platforms
other than XWindow System. The current proposed method can be applied only
to X applications because of Xvnc. To display a wider range of applications on
a TDW, optional kinds of VNC servers have to be leveraged in the proposed
method. For example, the Xvnc server should be replaced with a TightVNC
server [17] to display Windows applications.

Second, further extension of pipeline streaming is needed to enhance the
frame rate when streaming a high-resolution window. In Fig. 11, the degree of
improvement of the frame rate becomes smaller as the resolution increases. There
are two reasons for this result. Firstly, the processing time for Conversion be-
comes too large to be suppressed by pipelining. To realize maximum efficiency,
Conversion for each frame should be completed by the end of Synchronization for
the previous frame. Nevertheless, it becomes impossible to achieve this require-
ment when streaming the high-resolution window because of the rapid increase
of the processing time for Conversion. To deal with this inconvenience, accelerat-
ing Conversion in itself is necessary. For example, it is effective to re-implement
the processing for Conversion by using the primitive programming languages
such as C/C++ or Fortran. Secondly, the processing time for Transmission and
Synchronization becomes so large that it cannot be ignored. When the resolu-
tion of the video frames is high, a serious delay is likely to be caused by the
network congestion in Transmission and Synchronization. This situation slows



14 Kazuya Ishida et al.

(a) With the proposed method

(b) Without the proposed method

Fig. 10: Comparison of visibility on the TDW

down the entire streaming because Transmission and Synchronization cannot be
pipelined. To cope with this situation, it is essential to reduce the network traffic
of the streaming with some techniques such as data compression.

7 Conclusion

In this paper, we have developed a frame-streaming method to realize the high-
resolution streaming functionality in Screen Sharing. The evaluation in this pa-
per demonstrated that our proposed method enables Screen Sharing to stream
a high-resolution application window regardless of the specifications of the con-
nected monitor devices. The evaluation also showed that our proposed method
improves the frame rate with pipeline streaming.



Future of Information and Communications Conference (FICC) 2019 15

Fig. 11: Frame rate of Screen Sharing

For our future work, we will tackle the new problems associated with the
proposed method described in 6.4. Through this effort, we aim to make SAGE2
more applicable to various research areas.

Acknowledgment

This work was supported by the JSPS KAKENHI Grant Number JP18K11355
and the “Joint Usage/Research Center for Interdisciplinary Large-scale Informa-
tion Infrastructures” in Japan (Project ID: jh160056-ISH, jh170056-ISJ, jh180077-
ISJ).

References

1. Brown, J.B., Nakatsui, M., Okuno, Y.: Constructing a Foundational Platform
Driven by Japan’s K Supercomputer for Next-Generation Drug Design. Molec-
ular Informatics 33, 732–741 (2014)

2. Lau, C.D., Levesque, M.J., Chien, S., Date, S., Haga, J.H.: ViewDock TDW: High-
throughput visualization of virtual screening results. Bioinfomatics 26(15), 1915–
1917 (2010)

3. Humphreys, G., Buck, I., Eldridge, M., Hanrahan, P.: Distributed rendering for
scalable displays. In: Proceedings of the 2000 ACM/IEEE Conference on Super-
Computing, 30 (2000)

4. Marrinan, T., Aurisano, J., Nishimoto, A., Bharadwaj, K., Mateevitsi, V., Re-
nambot, L., Long, L., Johnson, A., Leigh, J.: SAGE2: A new approach for data
intensive collaboration using scalable resolution shared displays. In: Proceedings of



16 Kazuya Ishida et al.

the 2014 IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, pp. 177–186 (2014)

5. Doerr, K.U., Kuester, F.: CGLX: A scalable, high-performance visualization frame-
work for network displays. IEEE Transactions on Visualization and Computer
Graphics 17(3), 320–332 (2011)

6. Johnson, G.P., Abram, G.D., Westing, B., Navr’til, P., Gaither, K.: DisplayCluster:
An interactive visualization environment for tiled displays. In: Proceedings of the
2012 IEEE International Conference on Cluster Computing, pp. 239–247 (2012)

7. Community - SAGE2. http://sage2.sagecommons.org/community-2
8. Tada, T., Date, S., Shimojo, S., Ichikawa, K., Abe, H.: A visualization adapter for

SAGE-enabled tiled display wall. In: Proceedings of the 2011 IEEE International
Conference on Granular Computing, pp. 613–618 (2011)

9. Renambot, L., Jeong, B., Jagodic, R., Johnson, A., Leigh, J.: Collaborative visual-
ization using high-resolution tiled displays. In: Proceedings of the 2006 ACM CHI
Workshop on Information Visualization Interaction Techniques for Collaboration
Across Multiple Displays, pp. 1–4 (2006)

10. Kimball, J., Wypych, T., Kuester, F.: Low bandwidth desktop and video streaming
for collaborative tiled display environments. Future Generation Computer Systems
54, 336–343 (2016)

11. Neal, B., Hunkin, P., McGregor, A.: Distributed OpenGL rendering in network
bandwidth constrained environments. In: Proceedings of the 2011 Eurographics
Symposium on Parallel Graphics and Visualization, pp. 21–29 (2011)

12. Xvnc - the X-based VNC server. https://www.hep.phy.cam.ac.uk/vnc docs/xvnc.
html

13. Cybermedia Center, Osaka University large-scale visualization system. http://vis.
cmc.osaka-u.ac.jp

14. Reis, C., Gribble, S.D.: Isolating web programs in modern browser architectures.
In: Proceedings of the 2009 ACM European Conference on Computer Systems, pp.
219–232 (2009)

15. TurboVNC — Main / turboVNC. https://www.turbovnc.org
16. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,

N., Schwikowski, B., Ideker, T.: Cytoscape: A software environment for integrated
models of biomolecular interaction networks. Genome Research 13(11), 2498–2504
(2003)

17. TightVNC: VNC-compatible free remote control / remote desktop software. https:
//www.tightvnc.com


